What are the barriers to wider use of organ perfusion?

Simple diagram with dotted line framing red circle with icon of human heart to represent organ perfusion


UNOS Chief Medical Officer David Klassen, M.D., discusses perfusion-driven advances and remaining challenges

Normothermic perfusion continues to show promise as an innovation that will help increase the number of donor organs available for transplant. With perfusion, circulation and normal body temperature and function are maintained for the organ, making it possible both to evaluate the organ and potentially to limit the impact of ischemic time. However, cost, technology and training considerations remain barriers to widespread implementation. UNOS Chief Medical Officer Dr. David Klassen discusses recent developments in the field.
icon of a book

Explore issues in normothermic perfusion with a curated reading list

Q. Where is perfusion having the most impact right now in organ transplantation?

We’re seeing a steady increase in the number of organs being perfused. In 2022, more than 1,100 transplanted donor livers, hearts and lungs were perfused. Between 2018 and 2022, there was an almost five-fold increase in perfused livers transplanted, from fewer than 100 to nearly 500.

Perhaps the most important recent development is perfusion for DCD (donation after circulatory death) heart transplantation. Because the heart is particularly vulnerable to warm ischemic injury, increasing the number of successful DCD heart transplants was really dependent on perfusion technologies. A third of all donors are DCD donors, and potentially a significant number could be heart donors; one study estimated that widespread adoption of DCD heart transplant could lead to 300 more adult heart transplants annually.  UNOS data show that the number of DCD hearts perfused and transplanted has gone from 0 in 2018 to 199 in 2022.

photo Dr. David Klassen, UNOS Chief Medical Officer

“Perhaps the most important recent development is perfusion for DCD (donation after circulatory death) heart transplantation.”

David Klassen, M.D., Chief Medical Officer

Q. Are there other significant new developments?

In addition to ex-vivo machine perfusion, normothermic regional perfusion (NRP) for recovery of organs from DCD donors is now spreading fairly widely, and is also helping to increase the number of DCD hearts available for transplant. (See Normothermic Regional Perfusion: A reading list.) With NRP, cardiopulmonary bypass or ECMO is used to restore circulation and enable perfusion of DCD organs prior to recovery. Because these technologies are already in use in most ICUs, there is no new technology to acquire or learn to use, as there is with ex-vivo machines. Also with NRP, separate perfusion devices for each organ aren’t needed, as abdominal and thoracic organs can be perfused before recovery with this process.

Q. What barriers remain to greater use of perfusion?

At the present time cost remains the most significant limiting factor for either type of perfusion. It’s expensive, and questions have yet to be resolved about when it is most appropriate to use perfusion,  who pays for it, and how those costs are reimbursed.  Whether cost will limit the use of perfusion to larger and better-resourced transplant centers or OPOs remains to be seen.

Implementation of these technologies is also logistically complex.   It takes time and effort for new technologies and procedures like these to be widely incorporated.

Finally, more data are needed to firmly determine whether perfusion leads to better patient outcomes. Research so far indicates generally equal outcomes when compared with non-perfused organs.  Despite these questions perfusion is enabling increased use of expanded criteria and DCD organs, including those that previously might not have been considered viable for transplant.

A reading list

Understanding Normothermic Regional Perfusion (NRP)

Rather than perfusing donor organs by machine after recovery (“ex-vivo” perfusion), NRP uses extracorporeal membrane oxygenation (ECMO) or cardiopulmonary bypass technology to restore circulation and perfuse DCD donor organs prior to recovery from the deceased donor. The advantages of NRP include the potential to reduce warm ischemia time for DCD donor organs and the ability to assess DCD hearts prior to recovery.

However, NRP is technically complex and requires rapid, coordinated execution by a skilled team. To ensure success with the procedure, the recovery team may need to bring all the necessary equipment and supplies, as well as its own perfusionists, which can add to the cost and other considerations of procurement.

In addition, questions have been raised even within the medical community about the ethics of a procedure that restores circulation in a deceased donor as well as about the transparency necessary for true informed consent from donor families.

This reading list provides an overview of NRP as well as discussions and recent perfusion news coverage.

Oct. 2022 | American Society of Anesthesiologists: “Statement on Controlled Organ Donation After Circulatory Death”

April 2021 | The American College of Physicians: “The American College of Physicians says organ procurement method raises significant ethical concerns”

Feb. 2020 | The Journal of Medicine and Philosophy: A Forum for Bioethics and Philosophy of Medicine: “Why DCD donors are dead” An ethical and philosophical analysis of NRP and DCD transplant.

The post appeared first on UNOS.

Another record year for heart transplants: Steep increases seen in DCD transplants in 2022

in focus

A 68% increase in DCD heart transplants was part of a record-setting 2022

68% increase in DCD heart transplants in 2022

The 11th straight year of increases in heart transplants coincides with advancements in organ perfusion technology and DCD recovery practices.

In 2022, 42,888 organ transplants were performed in the United States, an increase of 3.7 percent over 2021 and a new annual overall record.*

While new records were also set for liver, kidney and lung transplants, heart transplants in particular experienced a steep increase, from both donation after brain death (DBD) donors, as well as donation after circulatory death (DCD) donors.

Heart transplants increased overall by 21.5 percent (4,169 in 2022)

DBD heart transplants increased 4.6 percent (3,822 in 2022)

DCD heart transplants increased 68 percent (347 in 2022)

Advances in technology and donor recovery practices contributing to increases

Rapidly-evolving perfusion technology is allowing more DCD hearts to be transplanted. Perfusion allows organs to remain viable for longer periods outside the body; this is important for organs such as hearts and lungs, which have shorter windows of time when compared to kidneys. 2022 saw a 95 percent increase in transplants of machine-perfused hearts.

Coinciding with these advances in technology, increasing recovery of DCD donors has been a key area of focus for the nation’s 56 organ procurement organizations (OPOs) for a number of years. A recent UNOS-led collaborative project helped OPOs share effective practices related to recovering DCD donors to increase transplant. Over the course of the national project, 75 percent of OPOs participated in one or both of the two cohorts, contributing to the overall increases in DCD donors recovered and DCD organs transplanted. A subsequent collaborative project is currently focused on increasing transplantation of DCD lungs, and more than 40 percent of the nation’s lung transplant programs are participating.  

A report from the National Academies of Sciences, Engineering and Medicine (NASEM) recommends taking collaborative improvement approaches as well as embracing innovative technologies to maximize organ use, in particular use of DCD organs.  

February is American Heart Month. Get resources, fact sheets and other information on the National Institutes of Health website.  

*According to the most recent data from the Organ Procurement and Transplantation Network (accessed Feb. 13, 2023)

In focus

February is American Heart Month

7 years of HOPE

7 years of HOPE

Implemented in 2015 , the HIV Organ Policy Equity (HOPE) Act has given more than 350 living with HIV an opportunity to receive a lifesaving transplant from an HIV-positive donor.

The post appeared first on UNOS.

Process Engineer

Job Title: Process Engineer

Summary:  The process engineer is responsible for the installation, qualification, operation, supervision of a biomedical device assembly facility clean room.  The role includes developing standard operating protocols, training materials, scheduling, and reporting activities for manufacturing within a regulatory controlled environment.  This includes operations of the facility, electrical, process equipment , HVAC, high performance air filtering, and cleaning.

The process engineer is responsible for handling multiple projects for the lifecycle of the controlled environment including commissioning  and qualifications activities to decommissioning.  He or she will be responsible for organizing, budgeting, scheduling, carrying out, instruction, and supervision of the project as directed by company leadership.

Company Overview: Hibernicor is an innovative medical device company that manufactures single use disposable containers which will be marketed for sale in the US and Europe.

Key Position Responsibilities:

The process engineer will be responsible for defining the critical quality attributes, and process parameters in the clean room including particulate levels, relative humidity, and temperature parameters in a GMP compliant manner. The engineer should define the clean room requirements in a user requirements document and solicit input from qualified vendors following established ISPE/ASTM methodologies and guidance.

The process engineer will perform and maintain a risk assessment for all the critical process parameters including quality assurance, quality control, commissioning, validation, manufacturing safety, automation, and project management.  This may include researching, developing and acting on plans  using in depth knowledge of ISO and 21 CFR Part 11 and other regulatory guidelines.

The process engineer will prepare commissioning and qualification protocols, standard operating procedures, and work instructions as needed for equipment and facility operations aligning with an overall master validation plan.  The engineer should be able to write the validation master plan, commissioning and validation documents for the clean room, HVAC systems, and equipment; specifically design qualification, installation qualification, operational qualification, and procedure qualification documents (DQ/IQ/OQ/PQ).  The engineer should be able to prepare checklist and complete inspections that includes both static and dynamic exhaustive testing of systems or major system components to support the qualification of equipment or system based upon manufactures acceptance test or user requirements specifications (FAT/SAT).

The process engineer must of have experience and understanding of clean room facility and requirements.  In addition the engineer must have knowledge of computer system validation requirement and preparation and execution of protocol related to computerized systems provided by vendors. The engineer will supervise with the help of contractors on daily basis with follow up and completion of qualifying activities and GMP documentation including: clean room fitment, filter, HVAC and software automation testing and audit trail verifications.

The process engineer will supervise progress of the commissioning and qualifying activities on a periodic basis and hold status meetings with the stakeholders.  The engineer will maintain alignment to the budgetary guidelines, quality and safety standards.  The engineer will need to maintain and update quality control documents in an existing electronic GMP compliant document management system.

The process engineer will need to manage multiple task to coordinate projects timelines and work collaboratively with vendors and stakeholders to mitigate risk, facilitate problem solving, and to reduce  or avoid delays.

Minimum employee qualifications:

Bachelor degree in engineering or science field
US citizen or permanent resident
A minimum of 3 years of professional experience leading, initiating and completing projects.
Experience with statistical data and an ability to effectively perform technical analysis
Experience making risk based decisions
Experience navigating and adhering to structured system requirements (i.e. Quality Management System)
Demonstrated effective communication of technical information, both verbally and in written reports
Ability and willingness to respond beyond normal business hours (including weekends).

Desired position skills in:

Working in a clean room environment and understanding facility infrastructure, as it relates to supporting a clean room.
Working knowledge of environmental standards (FDA 21 CFR Part 11, ISO 14644, ISO 14698, etc.)
Understanding  of bioburden, endotoxins, particulate, etc. and conducting statistical analysis thereof.

Reporting: The packaging engineer reports to the quality manager and company director.

Location: The location of the job is at the company offices either in the US. If travel may be necessary to accomplish the job responsibilities and is anticipated to be no more than 10% of the employment.

Type of Employment: The position is full time.

Salary Range & Benefits: The salary and benefits are commensurate with the applicant’s qualifications and experience.

How to Apply: Please submit a cover letter, resume and 3 references with contact information. We will respond to suitable candidates by email to setup an initial telephone interview.

Contact Information:

253 Ridge Drive
Jackson, MS 39216

UNOS CEO Brian Shepard to leave organization after a decade of service

United Network for Organ Sharing (UNOS) today announced that CEO Brian Shepard will depart the organization at the end of September, following the completion of his contract. Shepard’s 10-year tenure as UNOS CEO was marked by groundbreaking progress in the U.S. organ donation and transplantation system.

Maureen McBride, Ph.D., UNOS’ chief operating officer, will assume the role of interim CEO beginning Oct. 1 while UNOS conducts a national search for Shepard’s successor. McBride has been with the organization since 1995. She served as director of research until 2014, when she accepted her current role as COO.

Brian Shepard, CEO, United Network for Organ Sharing

A commitment to improving the system

During his tenure, Shepard presided over the adoption of innovative policies, lifesaving improvements and record increases in both organ donation and transplant, including 2021, when the national system conducted more than 41,000 transplants in a single year, a global record. These and other advancements have positioned UNOS to drive the next phase of system progress, from increasing equity in transplant to adopting cutting-edge technologies, to collaborative improvement, further strengthening the nation’s high performing system and saving more lives.

“As UNOS CEO, Brian was a constant and courageous advocate for increasing equity in our national donation and transplantation system,” said Jerry McCauley, M.D., vice-president of the UNOS Board of Directors and incoming president. “His leadership has resulted in marked improvements in access to transplant for patients of color and those who have been historically marginalized. I am proud to have worked alongside Brian as a member of the UNOS board and am excited to build upon the foundation he has laid to further advance our mission and save even more lives.”

“UNOS is the engine that powers the U.S. donation and transplant system, and we are so lucky to have had Brian Shepard in the driver’s seat for the past decade,” said Matthew Cooper, M.D., president of the UNOS Board of Directors. “During such a pivotal time in our community, Brian took UNOS to the next level, driving accomplishments and championing the work of so many. His is a legacy to be celebrated.”

Prioritizing patients, equity and innovation

Under Shepard’s leadership, UNOS undertook a series of efforts to increase equitable access to transplant, including adopting a new way to distribute donor organs that emphasizes patient need. These new polices have resulted in greater access for the sickest patients.

“These changes to organ distribution weren’t easy or always popular, and it was so important to have Brian centering these discussions,” said David Mulligan, M.D., immediate past president of the UNOS board. “Now that these policies are in place, we can see the positive impact they’re having on patients and families across the country.”

Additionally, Shepard was instrumental in the development of UNOS Labs, an innovation center dedicated to fostering new ideas and encouraging experimentation. Since its founding, UNOS Labs has developed transplant-focused predictive analytics to help doctors decide whether to accept an organ offer for their patient, a GPS tracker for organ shipments, an offer simulator to conduct behavioral science research to improve organ matching, and a high-quality medical image sharing platform.

“The UNOS team is the most incredibly talented and dedicated team I’ve ever had the honor of being a part of,” said Shepard. “I’ve always viewed my job as making their job easier; removing obstacles and watching them run. I’m so proud of what they’ve accomplished and of all of the ongoing efforts that will further improve donation and transplant in the U.S.”

A vision for the future of organ allocation

Over the last several years, Shepard has helped put into place a new allocation policy, called continuous distribution. This innovative approach dissolves rigid boundaries, and is structured so that no single attribute determines whether or not a patient receives a transplant. Importantly, continuous distribution is also designed to allow for more patient engagement in the decision-making process.

“As a three-decade heart transplant survivor who strongly advocates increased involvement for transplant patients in the policy development process, continuous distribution is a game changer,” said Jim Gleason, president of Transplant Recipients International Organization (TRIO). Gleason has engaged with UNOS for more than 25 years and is a two-term former UNOS Board member. “This effort is not only going to help guide patients to the information they need in their transplant journey, it will also give them an active contributor seat at the decision-making table.”

A lasting legacy

“From policymaking to technology, from system-wide improvements to one-on-one interactions, Brian’s leadership has left an indelible mark on UNOS and the wider donation and transplant community,” said Sue Dunn, former CEO of Donor Alliance and a former UNOS board president. “But for me, to see his ongoing commitment to honoring selfless donors, their courageous families, and recognizing the often-thankless work of our OPOs – that is a legacy be proud of.”

“We’ve come such a long way in the last decade,” said Shepard. “While I am honored that the Board asked me to continue to serve as CEO, I felt it was the right time to take the next step. I have worked with so many amazing and dedicated people over the years who made it possible to accomplish all that I originally set out to do as UNOS CEO. Now, as we embark on a new chapter with even more exciting opportunities, I know the UNOS team and the donation and transplant community are in good hands, and I’m excited about the future.”

United Network for Organ Sharing (UNOS) is the mission-driven non-profit serving as the nation’s transplant system under contract with the federal government. We lead the network of transplant hospitals, organ procurement organizations, and thousands of volunteers who are dedicated to honoring the gifts of life entrusted to us and to making lifesaving transplants possible for patients in need. Working together, we leverage data and advances in science and technology to continuously strengthen the system, increase the number of organs recovered and the number of transplants performed, and ensure patients across the nation have equitable access to transplant.

For media inquiries, contact or (804) 782-4730.

The post appeared first on UNOS.

[Approval] A state-of-the-art review of the current role of cardioprotective techniques in cardiac transplantation

Approve this article for publication

Delete this article

Interact Cardiovasc Thorac Surg. 2021 May 10;32(5):683-694. doi: 10.1093/icvts/ivaa333.


OBJECTIVES: The use of ‘extended criteria’ donor hearts and reconditioned hearts from donation after circulatory death has corresponded with an increase in primary graft dysfunction, with ischaemia-reperfusion injury being a major contributing factor in its pathogenesis. Limiting ischaemia-reperfusion injury through optimising donor heart preservation may significantly improve outcomes. We sought to review the literature to evaluate the evidence for this.

METHODS: A review of the published literature was performed to assess the potential impact of organ preservation optimisation on cardiac transplantation outcomes.

RESULTS: Ischaemia-reperfusion injury is a major factor in myocardial injury during transplantation with multiple potential therapeutic targets. Innate survival pathways have been identified, which can be mimicked with pharmacological conditioning. Although incompletely understood, discoveries in this domain have yielded extremely encouraging results with one of the most exciting prospects being the synergistic effect of selected agents. Ex situ heart perfusion is an additional promising adjunct.

CONCLUSIONS: Cardiac transplantation presents a unique opportunity to perfuse the whole heart before, or immediately after, the onset of ischaemia, thus maximising the potential for global cardioprotection while limiting possible systemic side effects. While clinical translation in the setting of myocardial infarction has often been disappointing, cardiac transplantation may afford the opportunity for cardioprotection to finally deliver on its preclinical promise.

PMID:33971665 | DOI:10.1093/icvts/ivaa333

[Approval] The Effect of Increasing Donor Age on Myocardial Ischemic Tolerance in a Rodent Model of Donation After Circulatory Death

Approve this article for publication

Delete this article

Transplant Direct. 2021 May 18;7(6):e699. doi: 10.1097/TXD.0000000000001148. eCollection 2021 Jun.


Hearts from older donors or procured via donation after circulatory death (DCD) can alleviate transplant waitlist; however, these hearts are particularly vulnerable to injury caused by warm ischemic times (WITs) inherent to DCD. This study investigates how the combination of increasing donor age and pharmacologic supplementation affects the ischemic tolerance and functional recovery of DCD hearts and how age impacts cardiac mitochondrial respiratory capacity and oxidative phosphorylation.

METHODS: Wistar rats (12-, 18-, and 24-mo-old) were subjected to DCD with 20-min fixed WIT. Hearts were procured, instrumented onto a Langendorff perfusion circuit, flushed with Celsior preservation solution with or without supplementation (glyceryl trinitrate ) and perfused (Krebs-Henseleit buffer, 37°C Langendorff 30-min, working 30-min). Cardiac functional recovery of aortic flow (AF), coronary flow (CF), cardiac output (CO), and lactate dehydrogenase release were measured. Native heart tissue (3-, 12-, and 24-mo) were assessed for mitochondrial respiratory capacity.

RESULTS: Unsupplemented 18- and 24-month DCD hearts showed a 6-fold decrease in AF recovery relative to unsupplemented 12-month DCD hearts. GTN/EPO/Z supplementation significantly increased AF and CO recovery of 18-month DCD hearts to levels comparable to supplemented 12-month hearts; however, GTN/EPO/Z did not improve 24-month DCD heart recovery. Compared to 12-month heart tissue, 24-month hearts exhibited significantly impaired mitochondrial oxygen flux at complex I, II, and uncoupled maximal respiration stage.

CONCLUSIONS: Reduced ischemic tolerance after DCD was associated with increasing age. Pharmacologic supplementation improves functional recovery of rat DCD hearts but only up to age 18 months, possibly attributed to a decline in mitochondrial respiratory capacity with increasing age.

PMID:34036169 | PMC:PMC8133134 | DOI:10.1097/TXD.0000000000001148

[Approval] Erratum to machine perfusion of donor heart with normothermic blood versus hypothermic HTK in preserving coronary endothelium in a porcine model of DCD

Approve this article for publication

Delete this article

Ann Palliat Med. 2021 Jun;10(6):7151-7152. doi: 10.21037/apm-2021-04. Epub 2021 May 18.


PMID:34044574 | DOI:10.21037/apm-2021-04

[Approval] The Genetically Engineered Heart as a Bridge to Allotransplantation in Infants Just Around the Corner?

Approve this article for publication

Delete this article

Ann Thorac Surg. 2021 Jun 4:S0003-4975(21)00982-6. doi: 10.1016/j.athoracsur.2021.05.025. Online ahead of print.


BACKGROUND: Mortality for infants on the heart transplant wait list remains unacceptably high, and available mechanical circulatory support is suboptimal. Our goal is to demonstrate the feasibility of utilizing genetically engineered pig (GEP) heart as a bridge to allotransplantation by transplantation of a GEP heart in a baboon.

METHODS: Four baboons underwent orthotopic cardiac transplantation from GEP donors. All donor pigs had galactosyl-1,3-galactose knocked out. Two donor pigs had human complement regulatory CD55 transgene and the other 2 had human complement regulatory CD46 and thrombomodulin. Induction immunosuppression included thymoglobulin, and Anti-CD20. Maintenance immunosuppression was Rapamycin, AntiCD-40 and methylprednisolone. One donor heart was preserved with University of Wisconsin (UW) solution and the other three with del Nido solution.

RESULTS: All baboons weaned from cardiopulmonary bypass. B217 received a donor heart preserved with UW. Ventricular arrhythmias and depressed cardiac function resulted in early death. All recipients of del Nido preserved hearts easily weaned from cardiopulmonary bypass with minimal inotropic support. B15416 and B1917 survived for 90 days and 241 days respectively. Histopathology in B15416 revealed no significant myocardial rejection but cellular infiltrate around Purkinje fibers. Histopathology in B1917 was consistent with severe rejection. B37367 had uneventful transplant but developed significant respiratory distress with a cardiac arrest.

CONCLUSIONS: Survival of B15416 and B1917 demonstrates the feasibility of pursuing additional research to document the ability to bridge an infant to cardiac allotransplant with a GEP heart.

PMID:34097894 | DOI:10.1016/j.athoracsur.2021.05.025

[Approval] Ex Situ Perfusion of Hearts Donated After Euthanasia: A Promising Contribution to Heart Transplantation

Approve this article for publication

Delete this article

Transplant Direct. 2021 Feb 22;7(3):e676. doi: 10.1097/TXD.0000000000001120. eCollection 2021 Mar.


Organ donation after euthanasia is performed in an increasing number of countries. In this donation after circulatory death procedure, it has not been possible to donate the heart. Recent literature, however, reports positive results of heart donation after circulatory death. Therefore, patients who donate organs following euthanasia might be suitable candidates for heart donation. We want to confirm this assumption by sharing the results of 2 cases of heart donation following euthanasia with ex situ subnormothermic heart preservation. Our aim is to raise awareness of the potential of heart donation following euthanasia for both clinical transplantation and research.

METHODS: The data of 2 consecutive heart donations following euthanasia were collected prospectively. Informed consent was obtained from the patients themselves for heart donation for research purposes. An acellular oxygenated subnormothermic machine perfusion strategy was used to preserve both donor hearts. Subsequently, the hearts were evaluated on a normothermic perfusion machine using a balloon in the left ventricle.

RESULTS: Heart donation following euthanasia was feasible without significant changes in existing retrieval protocols. Duration of machine perfusion preservation was 408 and 432 minutes, for heart 1 and 2, respectively. For heart 1, developed pressure (Pdev) was 119 mm Hg, maximal rate of pressure rise (dP/dtmax), and fall (dP/dtmin) were 1524 mm Hg/s and -1057 mm Hg/s, respectively. For heart 2, Pdev was 142 mm Hg, dP/dtmax was 1098 mm Hg/s, and dP/dtmin was -802 mm Hg/s.

CONCLUSIONS: Hearts donated following euthanasia are highly valuable for research purposes and can have sufficient quality to be transplanted. With the implementation of ex situ heart perfusion, patients who are to donate their organs following euthanasia should also be able to donate their hearts. The complex combination of euthanasia and heart donation is ethically sound and surgically feasible and can contribute to shortening the heart transplant waiting list.

PMID:34104712 | PMC:PMC8183709 | DOI:10.1097/TXD.0000000000001120

[Approval] Heart transplantation from controlled donation after circulatory death using thoracoabdominal normothermic regional perfusion and cold storage

Approve this article for publication

Delete this article

J Card Surg. 2021 Sep;36(9):3421-3424. doi: 10.1111/jocs.15733. Epub 2021 Jun 12.


BACKGROUND: Heart transplantation from controlled donation after the circulatory determination of death (cDCDD) may be an option to increase the pool of grafts for transplantation.

MATERIALS AND METHODS: Initial experiences on cDCDD heart transplantation were based on the direct procurement of the heart followed by preservation with ex situ perfusion devices. Later, the use of thoracoabdominal normothermic regional perfusion (TA-NRP) has emerged as an option to recover hearts. We present a case of a heart transplant using a graft from controlled donation after circulatory death. Cardiac preservation was performed by postmortem TA-NRP followed by cold storage. Ex situ perfusion device was not used.

DISCUSSION AND CONCLUSION: This is one of the first published cases of a controlled donation after circulatory death heart retrieved using only TA-NRP and successfully transplanted.

PMID:34117800 | DOI:10.1111/jocs.15733